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ABSTRACT

We address the problem of fast and accurate localization of
miniature surgical instruments like needles or electrodes us-
ing 3D ultrasound (US). An algorithm based on maximizing
a Parallel Integral Transform (PIP) can automatically localize
line-shaped objects in 3D US images with accuracy on the
order of hundreds of micrometers. Here we propose to use
a multi-resolution to accelerate the algorithm signi cantly.
We use a maximum function for downsampling to preserve
the high intensity voxels of a thin electrode. We integrate the
multi-resolution pyramid into a hierarchical mesh-grid search
of PIP. The experiments with a tissue mimicking phantom and
breast biopsy data show that proposed method works well on
real US images. The speed-up is threefold compared to orig-
inal PIP method with the same accuracy 0.4 mm. A further
speed-up up to 16 times is reached by an early stopping of the
optimization, at the expense of some loss of accuracy.

Index Terms— 3D ultrasound, electrode, localization,
parallel integral projection, multi-resolution

1. INTRODUCTION

Tool localization using medical imaging modalities such as
MRI, CT and US allows the physician to view anatomical in-
formation of human body together with the location of surgi-
cal instruments during the intervention [1]. We focus on the
3D US modality which is relatively affordable, non-invasive,
and involves no ionizing radiation. It offers real-time 3D
images with suf cient resolution, but with large amount of
speckle noise and acoustic artifacts.

Our task is to automatically localize an electrode or a thin
needle inserted into a biological tissue. Its diameter is about
1 millimeter or smaller. The electrode is usually straight and
appears as high intensity voxels in a US image. One possible
application is nding a plane passing through the electrode
for visualization purposes, as physicians are used to exam-
ine 2D US images. Other applications include automatic tool
guidance or tracking neuronal recording sites.

1.1. Previous work

A variety of algorithms for object localization in US data have
been proposed. The position of an electrode axis can be deter-
mined in a 2D image using Principal Component Analysis [2]
on a thresholded variance image. Ding [3] proposes to nd the
lines in 2D projections of a volume by a parallel projection.
Barva [4, 5] shows that 3D Parallel Integral Projection can
be used to nd the electrode axis. Novotny [6] decomposes
the volume to overlapping spheres and nds the instrument in
each subvolume. He uses a modi ed Radon Transform im-
plemented on a GPU. Barva [4, 7] uses a polynomial to de-
scribe a deformed electrode, whose parameters are estimated
by a RANSAC algorithm.

2. PARALLEL INTEGRAL PROJECTION (PIP)

Our method is based on a Parallel Integral Projection (PIP) for
electrode localization [4, 5] which works in two steps: (i) axis
localization, and (ii) tip localization. We assume that the axis
is straight and the length is much greater than the diameter.

The PIP [4, 5] is a transform that maps an image function
I : R

3 → R representing volume data to a function PI :
R

4 → R. Formally, the PIP transformation of I(x) is:

PI(u, v, α, β) =
∫ ∞

−∞
I (

R(α, β) · (u, v, τ)T
)
dτ, (1)

where R(α, β) is a rotation matrix representing a rotation
around the x-axis by angle α, and around y-axis by angle β.
The PIP transform is similar to the Radon transform.

To nd the electrode axis we need to nd the maximum of
PI . We decompose the maximization of PI(u, v, α, β) to an
inner maximization with respect to (u, v) and an outer max-
imization with respect to (α, β), using a hierarchical mesh-
grid approach [8].

We nd an electrode endpoint along the estimated axis
[4, 5] as point where intensity rst decreases under a thresh-
old T1, estimated using probability density of intensities of
the electrode P (el) and background P (bg). We skip breaks
shorter than a threshold T2, which is estimated as a 95% quan-
tile of the distribution of break lengths.

33978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



Original image

max 2x max 4x max 8x max 16x

avg 2x avg 4x avg 8x avg 16x

Fig. 1. The 2D image of slice with needle selected from 3D volume, and multiple downsampled images using max and avg
functions. The original resolution was 53x71x262 voxels, for each coarser level the resolution has been divided by two. You can
see the electrode of radius 0.3 mm is blurred out in case of the avg function in coarse resolutions, while for the max function
the contrast between electrode and background stays relatively good.

3. MULTI-RESOLUTION PARALLEL INTEGRAL
PROJECTION (MR PIP)

As the original PIP method [4, 5] is rather slow, we want
to improve its speed. We propose to use downsampled 3D
images for electrode localization. We will show that using
a maximum function we obtain reliable results on downsam-
pled images better than with standard downsampling based on
averaging.

A discrete function Ismp : N
3 → R represents an image

I at the pixel grid. We de ne the downsampled image Idown

of image Ismp by a factor Mx, My, Nz ∈ N:

If
down(x, y, z) = f {Ismp(xMx + i, yMy + j, zMz + k)} ,

where 0 ≤ i < Mx, 0 ≤ j < My, 0 ≤ k < Mz . We use
a function f : R

n → R to lter the set of neighboring vox-
els, yielding a pixel value at the coarser resolution. f should
preserve well the differences between the electrode and the
background. As f , we will use avg for average and max for
maximum of a set of values. We set Mx = My = Mz =
2. A multi-resolution pyramid was constructed by repeated
downsampling (Figure 1):

I1 = Ismp, I2 = Imax
down(I1), . . . In = Imax

down(In−1).

3.1. Algorithm

We use a hierarchical mesh-grid search [4, 5, 8] for nding the
maximum (αmax, βmax, umax, vmax) of the PIP transform
with respect to arg maxα,β maxu,v PI(u, v, α, β). We mod-
ify this maximization using multi-resolution (Algorithm 1).
The discretization step Δ for (α, β) and the discretization step
Γ for (u, v) is iteratively decreased as the resolution level Ik

is re ned. This makes the method faster than PIP.
By stopping the iterative algorithm early we further accel-

erate the algorithm. We stop on a coarse resolution IKfinal

and set larger discretization steps Δfinal and Γfinal. This
usually amounts to using a smaller number of iterations but

Input: 3D image Ismp with electrode, constants
Δinit, Δfinal, Γinit, Γfinal, Kinit, Kfinal

Result: electrode axis: (αmax, βmax, umax, vmax)
Create multiple resolutions I1...In;1

k ← Kinit, Δ ← Δinit, Γ ← Γinit, R ← 90◦;2

A ← (0◦, Δ, 2Δ, ..., 180◦) × (0◦, Δ, 2Δ, ..., 180◦);3

while Δ > Δfinal or Γ > Γfinal or k > Kfinal do4

(αmax, βmax, umax, vmax) ← argmaxα,β maxu,v5

PIk
(u, v, α, β) where (α, β) ∈ A and (u, v)

∈ (u1, u1 + Γ, ..., u2) × (v1, v1 + Γ, ..., v2);
k ← max(k − 1, Kfinal);6

Δ ← max(Δ/2, Δfinal);7

Γ ← max(Γ/2, Γfinal), R ← R/2;8

A ← (αmax −R, αmax −R + Δ, ..., αmax + R)9

× (βmax − R, βmax − R + Δ, ..., βmax + R);

Algorithm 1: Hierarchical mesh-grid search of MR PIP.
Constants u1, u2, v1, v2 are boundaries of the projected
volume, A contains the set of angles for evaluation of
PIk

, R is the size of the current interval of angles.
Δinit, Δfinal and Γinit, Γfinal are initial and nal dis-
cretization steps for Δ and Γ respectively. Kinit and
Kfinal is initial and nal level of resolution.

decreases the accuracy. We call this method Fast Multi-
resolution Parallel Integral Projection (Fast MR PIP).

Let us analyze the time complexity of MR PIP. Num-
ber of iterations of while loop in Algorithm 1 is at most
N = max{N1, N2, N3} where N1 = �log2

2Δinit

Δfinal
�, N2 =

�log2
2Γinit

Γfinal
� and N3 = Kinit−Kfinal +1. Number of eval-

uations of PIk
in each iteration is dependent on maximization

term in line 5. There are T1 = ( 180◦
Δinit

)2 evaluations of outer

part maximizing over (α, β) and T2 =
∑Γfinal

i=Γinit
( size

Γi
)2 =

4
√

3 · ( size
Γfinal

)2 evaluations of inner part maximizing over

(u, v). The total number of evaluations of PI(u, v, α, β)
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Fig. 2. Results from MR PIP on simulated data with an electrode. The original resolution of the data was 53×71×307 voxels.
Original PIP algorithm is equivalent to resolution level 1. The success rate considers good results with axis accuracy better than
10 mm. The charts show means as points and standard deviations as vertical bars.
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Fig. 3. Comparison of SNR of simulated data on different
resolution levels for max and avg ltering function.

is N · T1 · T2 and it depends on the size of volume and
discretization steps Δinit, Δfinal, Γinit, Γfinal.

4. RESULTS

We will show that the MR PIP method is as accurate as the
original PIP method while being faster. The method was im-
plemented in MATLAB. We did all tests on a Gentoo Linux
computer with a 64-bit Intel Core 2 processor at 2400 MHz.

Two measures are used to quantify the accuracy [4, 5].
The rst measure εtip = ‖T − T̂‖ evaluates the tip local-
ization accuracy, where T is the true electrode tip, T̂ an esti-
mated tip and ‖·‖ is the Euclidean distance. Axis localization
accuracy is given by εaxis = max {‖E − Q1‖, ‖T − Q2‖} ,
where E is the intercept point, Q1 and Q2 are the orthogonal
projections of E and T on the estimated axis with respect to
the true axis.

For evaluation of image quality we de ne the signal-to-

noise ratio: SNR = 10 log E[x2
el]

E[x2
bg]

[dB] where xel are voxels

with distance from the axis less than an electrode radius and
the remaining voxels are considered as background xbg .

4.1. Evaluation of parameters in uence

The experiments were done on 28 simulated datasets of size
53x71x307 voxels with varying electrode translation and ro-
tation. Simulated data were generated using the US simulator
FIELD II [9], set to imitate the US scanner Voluson 530D.
The discretization parameters were xed to Δinit = 32◦,
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Fig. 4. The charts show the dependence of time and accuracy
on nal discretization Γfinal for Fast MR PIP and simple PIP
without any multi-resolution on simulated data.

Δfinal = 1◦, Γinit = 0.4 · 2levels−1mm, Γfinal = 0.4 mm
where levels is number of resolutions.

We compared the max and avg function for downsam-
pling. The SNR values of simulated data are in Figure 3.
Downsampling using a max function seems to preserve the
electrode shape better and also the SNR is better. Figure 2a
shows the success rate for the MR PIP on synthetic data. The
success rate is steadily close to 100% for the max function,
and decreasing to 0% for the avg. We decided to use the max
function for downsampling in the rest of experiments.

We varied the number of resolution levels from 1 to 5 and
measured the time (Figure 2b). As expected, the time has
been signi cantly reduced from the 123 seconds mean time
for the original single resolution PIP method (Table 1, row
1). Best mean time was 46 seconds for resolution 3 (Table 1,
row 2) with the accuracy 0.4 mm which is satisfactory (Fig-
ure 2c,2d).

We have also evaluated the tradeoff between speed and ac-
curacy for the Fast MR PIP method. The results for different
values of the nal discretization step are shown in Figure 4.
We reached the mean time 7.8 seconds with axis accuracy
around 2 mm for Γfinal = 1.6 mm (Table 1, row 3).
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data / method time [sec] axis ac. [mm] tip ac. [mm]

simulated / 1 123 ± 5.8 0.327 ± 0.180 1.732 ± 5.132
simulated / 2 46.1 ± 15 0.371 ± 0.178 0.422 ± 0.268
simulated / 3 7.8 ± 2.6 2.143 ± 1.369 13.89 ± 6.67

phantom / 2 62.5 ± 26 0.443 ± 0.206 0.508 ± 0.175
phantom / 3 7.3 ± 2.1 1.421 ± 0.429 9.335 ± 7.747

br. biopsy / 2 61 0.108 0.569
br. biopsy / 3 5.5 3.270 3.302

Table 1. Results on various data: simulated data (28 datasets),
cryogel phantom (8 datasets), breast biopsy (1 dataset). Meth-
ods used is this table: 1 - PIP on single full resolution, 2 -
MR PIP with 3 resolutions, 3 - Fast MR PIP. The mean and
standard deviations of elapsed time, axis accuracy and tip ac-
curacy are reported.
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Fig. 5. Data of breast biopsy with a needle of diameter 1 mm.
The slice with needle is shown, resolution 207×383×208.

4.2. Experiments on phantom and real data

We acquired 8 datasets of a cryogel tissue mimicking phan-
tom with a thin tungsten electrode of 250 μm in diameter and
length 20 mm using an US scanner Voluson 530D [10]. The
datasets are sector volumes of 40◦×40◦×depth 6.2 cm with
a resolution of 53×71×310 voxels. The success rate for ex-
periments on this data was 100% in all cases and measured
time and accuracy can be found in Table 1 (row 4 for MR PIP
and row 5 for Fast MR PIP).

A dataset of breast biopsy was acquired by a 3D US scan-
ner GE Voluson E8 with the 12 MHz probe. The biopsy nee-
dle was 1.092 mm in diameter. The geometry of this vol-
ume was 30◦ × 38 mm width × 19 mm depth with resolution
207×383×208 voxels. The localization was successful with
a discretization step Γfinal =0.3 mm and the result matches
with visual identi cation. The time and achieved accuracy are
in Table 1 (row 6 for MR PIP and row 7 for Fast MR PIP).

5. CONCLUSIONS

We have presented a multi-resolution PIP method for elec-
trode axis localization in 3D US data which is much faster
than the original PIP and yet has the same accuracy. This
makes PIP method nal practical for real applications. Fur-
ther speed-up is achieved by Fast multi-resolution PIP based

on an early stopping of the hierarchical search algorithm.
Rewriting the method in a compiled language or implement-
ing the method on a GPU will also accelerate it substantially.

We propose downsampling with the max function which
preserves electrode voxels better than averaging. This can be
used also for other applications requiring fast detection of thin
lines, e.g. vessel segmentation in a 3D image.
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